

International Journal of Computer Science and Mathematical Theory (IJCSMT) E-ISSN 2545-5699

P-ISSN 2695-1924 Vol 10. No.2 2024 www.iiardjournals.org

 IIARD – International Institute of Academic Research and Development

Page 157

Comparative Performance Analysis of Cryptographic Techniques for

Securing the Physical Layer in Internet of Medical Things (IoMT)

Systems

Eterigho Okpomo Okpu, Onate Egerton Taylor, Nuka Dumle Nwiabu and Daniel Matthias

Dept. of Cyber Security, Delta State University of Science & Technology, Ozoro, Nigeria

Dept. of Computer Science, Rivers State University, Port-Harcourt, Nigeria

Dept. of Computer Science, Rivers State University, Port-Harcourt, Nigeria

Dept. of Computer Science, Rivers State University, Port-Harcourt, Nigeria

Contact: +2348065518636 Corresponding author email: okpuoe@dsust.edu.ng

DOI: 10.56201/ijcsmt.v10.no2.2024.pg157.169

Abstract

Sensitive medical data can be exchanged and collected via connected devices because to the rapidly

expanding Internet of Medical Things (IoMT). Protecting patient privacy and the dependability of

medical applications requires ensuring the security and integrity of this data. This study examines

and contrasts two cryptographic strategies for IoMT system physical layer security. The first method

combines the HMAC-SHA-256 hashing technique to assure data integrity with the AES-256

encryption algorithm to maintain data confidentiality. The second strategy makes use of the AES-

GCM (Galois/Counter Mode) technique, which offers assurance of integrity and confidentiality in a

single, integrated process. The study assessed and contrasted the performance characteristics of the

two techniques with respect to the duration required for the encryption and decryption of identical

data samples. The outcomes show that, in terms of encryption and decryption times, the AES-GCM

technique performs better than the AES-256 + HMAC-SHA-256 strategy. The research's conclusions

offer insightful information to IoMT system designers and developers, empowering them to choose

the best cryptographic methods for protecting the integrity and confidentiality of private medical

data in IoMT applications' physical layer.

Keywords: Advanced Encryption Standard (AES-256) encryption; Hash-based Message

Authentication Code (HMAC); Advanced Encryption Standard - Galois/Counter Mode (AES-GCM);

Internet of Medical Things (IoMT); Cryptography; Encryption; Decryption; hashing; wearable

device manometer; physical layer of IoMT.

1. INTRODUCTION

Cryptography is the study and use of techniques to shield information and communications from

adversaries [1]. The science of information and communication security is known as cryptography.

By prohibiting illegal alteration, it provides protection against unauthorized parties [2]. Hashing

functions allow data to be converted into unique fixed-length strings (hash values), which allow

recipients to compare hashes and verify the content's integrity [3]. Two of the most common forms

of cryptography are symmetric encryption, which uses one key for both encryption and decryption,

and asymmetric encryption, which uses two keys—a public key for encryption and a private key for

decryption—for both operations [3]. On a variety of digital platforms, the Advanced Encryption

Standard (AES) ensures secure communication and data security. [4]AES-256 employs a 256-bit key

in its symmetric-key encryption technique. By utilizing the AES cipher to encrypt data, it offers

http://www.iiardjournals.org/
mailto:okpuoe@dsust.edu.ng

International Journal of Computer Science and Mathematical Theory (IJCSMT) E-ISSN 2545-5699

P-ISSN 2695-1924 Vol 10. No.2 2024 www.iiardjournals.org

 IIARD – International Institute of Academic Research and Development

Page 158

confidentiality. AES-256 is an encryption method that has gained widespread use and confidence due

to its high level of security. [5] There are three variants of the popular block cipher AES (Advanced

Encryption Standard): AES-128, AES-192, and AES-256. The versions vary in the number of rounds

and key size. Parallel architectures are essential for good performance with AES algorithms because

they require substantial computational power for information security [6].

The trustworthy Message Authentication Code (HMAC), which is hash-based, can be used to verify

the integrity and authenticity of data transfer. [7] A hash function's job is to create a message or set

of data's "fingerprint" for authentication. The length of the hash code that the algorithm generates

determines how resilient it is to brute-force attacks. Software can execute Message Authentication

Codes (MAC) more quickly when they are constructed from Cryptographic hash functions (SHA-

256) rather than symmetric block ciphers like Data Encryption. [8] Unlike encryption/decryption

algorithms, the widely used Message Authentication Code (MAC) algorithm is not reversible for

message authentication. HMAC creates a unique fixed-size hash value known as a tag by combining

the message that has to be verified with a secret key using cryptographic hash methods like Secure

hash algorithm (SHA-256). HMAC safeguards the data integrity by generating a tag that is dependent

on both the message content and the secret key [9]. This tag is sent with the message so that the

recipient can use the shared secret key and the message they received to recalculate the HMAC and

verify its authenticity [10]. While HMAC is a subset of MAC that verifies the authenticity of a

message using a private key and a cryptographic hash function, MAC is used to confirm the

authenticity of messages. SHA-256 and other hashing algorithms can be inserted into the HMAC

algorithm's framework; the term "SHA256+" refers to the combined use of these methods [11].

[12] Data encryption and authentication on the physical layer of the Internet of Things using AES-

GCM (Advanced Encryption Standard - Galois/Counter Mode) can be done. An effective encryption

technique for Internet of Things applications is AES-GCM. [13] To provide data secrecy while being

sent over the IoT physical layer, AES-GCM employs the AES block cipher. AES-GCM offers robust

encryption capabilities and supports key sizes of 128 bits, 192 bits, and 256 bits. The Galois/Counter

Mode (GCM) tag, which is produced by AES-GCM, is a Message Authentication Code (MAC) that

is used to confirm the validity and integrity of encrypted data [14]. The recipient can confirm the

data's integrity by recalculating the GCM tag and comparing it with the received tag after receiving

the encrypted data and GCM tag [15]. The recipient can be sure that the data hasn't been altered after

transmission if the tags match [16]. One can adjust the GCM tag length (usually 16 bytes) to offer

strong protection against attempts at forging. The encrypted data, the IV, and any additional

authenticated data (AAD) are used to calculate this GCM tag. [17] Additional Authenticated Data

(AAD), which can be used to secure headers or metadata in addition to the encrypted payload, can

be included with AES-GCM. This is especially helpful in Internet of Things instances where you

might need to safeguard both the sensitive payload and some non-sensitive data. Every encryption

operation performed by AES-GCM generates a distinct Initialization Vector (IV), preventing replay

attacks, in which a malicious party tries to reuse previously transmitted data [17]. To guarantee that

the IV is distinct for each message, it is usually generated from a counter value or a nonce, which is

an integer that is used just once. Because of its speed and efficiency, AES-GCM is well suited for

Internet of Things applications that demand high-performance cryptographic processes [18]. The

algorithm can benefit from parallelization for increased throughput and can be implemented in either

software or hardware.

Researchers can secure the communication channel at the bottom of the IoT stack by employing

AES-GCM at the IoMT physical layer to preserve the confidentiality and integrity of your IoMT

data. [19] In addition to ensuring confidentiality through encryption, IoT device manufacturers and

system designers can guarantee the integrity of the data being transmitted over the physical layer by

http://www.iiardjournals.org/

International Journal of Computer Science and Mathematical Theory (IJCSMT) E-ISSN 2545-5699

P-ISSN 2695-1924 Vol 10. No.2 2024 www.iiardjournals.org

 IIARD – International Institute of Academic Research and Development

Page 159

utilizing AES-GCM. All things considered, AES-GCM, with its distinct IV and GCM tag

mechanism, strengthens the overall security of the IoT infrastructure by offering a strong protection

against replay assaults in IoT systems.

AES-256 offers confidentiality, HMAC-SHA-256 offers data integrity and authenticity, and AES-

GCM offers both [19]. These are the main distinctions between AES-256, HMAC-SHA-256, and

AES-GCM. AES-GCM is an encryption method that combines GHASH authentication and AES

encryption, while HMAC-SHA-256 is a message authentication code. AES-256 is a symmetric-key

encryption algorithm. AES-GCM is frequently used in secure communication protocols and

applications that require both encryption and authentication, while AES-256 is frequently used for

encryption and HMAC-SHA-256 is frequently used for data signing and verification [20]. In general,

AES-GCM outperforms AES-256 and HMAC-SHA-256 combined in terms of speed and efficiency.

High security is offered by AES-GCM and the AES-256 + HMAC-SHA-256 method.

A wearable manometer designed exclusively for blood pressure measurement is a device that

combines Internet of Things (IoT) capabilities with manometer capability to provide continuous,

linked blood pressure monitoring [21]. Many medical conditions that are sometimes hard to diagnose

or have symptoms that are not immediately apparent can be predicted with the use of a heart rate

monitoring gear. Security and privacy are the main drawbacks of IoMT healthcare [22]. Attacks on

internet-enabled and connected medical devices have the potential to seriously impair patients'

physical and mental health, possibly even resulting in death. Man-in-the-middle (MitM) attacks,

wormhole attacks, sinkhole attacks, distributed denial of service (DDoS) attacks, eavesdropping,

ransomware, and many more are examples of common IoT attacks [23]. Attacks similar to denial-of-

service attacks can be launched by exploiting security flaws in Internet of Things devices or by

getting into a large number of devices to establish a botnet. Data stored on Internet of Things devices

can be encrypted by ransomware, preventing authorized users from accessing it [24]. [25] In 2019,

the medical industry reported 41.4 million patient data breaches, or approximately 49% more attacks

than in 2018. 32% of all reported data breaches between 2015 and 2022 occurred in the healthcare

industry. 707 healthcare data breaches occurred in 2022 [26].

A few of the IoMT systems now in use have poor encryption and no physical layer data integrity.

Based on the aforementioned problems, the study's goals are to apply HMAC hashing to confirm the

data's integrity at the physical layer, adding another degree of security and privacy, and to deploy

AES-256 encryption to guarantee the confidentiality of data transferred through Internet of Things

smart healthcare devices. The AES-GCM technique was also used in the research to guarantee data

integrity and security at the physical layer of the Internet of Medical Things. The amount of time

needed to encrypt and decrypt the same data was also compared for both algorithms in this paper.

Python was used as the programming language to create the system. The goal of this research is to

create a safe flow of data from the physical layer to the application layer in wearable fitness trackers,

smart watches, temperature sensor devices, wearable manometers, and smart clothing that monitors

blood pressure for hypertension.

2. RELATED WORK

[5] In order to increase computational capacity for high-security cryptography, the investigator's

primary objective is to implement the AES cryptographic algorithm using parallel computing

architectures, notably field-programmable gate arrays (FPGAs). For high-security cryptography

applications, parallelized architecture on FPGA platforms enables the AES algorithm's

implementation, providing more processing capacity. [7] The author wants to use Verilog to develop

Advanced Encryption Standard (AES) encryption. Cryptographic methods are used to safeguard data,

such as that found in electronics. [8] The researchers employed Secured Hash Algorithm 256 and

http://www.iiardjournals.org/

International Journal of Computer Science and Mathematical Theory (IJCSMT) E-ISSN 2545-5699

P-ISSN 2695-1924 Vol 10. No.2 2024 www.iiardjournals.org

 IIARD – International Institute of Academic Research and Development

Page 160

Keyed-Hash Message Authentication Code (HMAC-SHA256) to provide a safe information-sharing

environment. Additionally, a trust-based mechanism was added that can distinguish between trusted

and malicious nodes in the network. [27] A high-throughput, compact SHA-256 hash function FPGA

design was reported in this study, along with the matching HMAC FPGA design. [9] This author

examines a quick implementation of the Hash-based Message Authentication Code (HMAC), which

makes use of the SHA-256 algorithm to maximize hardware efficiency and design efficacy by

ensuring the validity and integrity of data.

[11] A high-performance HMAC processor built on the SHA-2 family of hash algorithms was

presented by the authors. Specifically, four HMAC hardware modules—SHA224, SHA-256, SHA-

384, and SHA-512—are implemented. [28] The primary objective of the suggested approach is to

minimize superfluous block operations and enhance the internal workings of the underlying pseudo

random function (PRF). Stated differently, the author has combined multiple superfluous processes

and fully utilizes the constant values present in PBKDF2. [29] The purpose of this master's thesis is

to evaluate the Solo key's security against various side channel attacks. Solo is an open source

security token. To provide a strong second factor authentication, the Fido Alliance's U2F

authentication protocol is used by the Solo key. This study, which is based on the concept of session

protection as put forth by [30], stores the shared keys required for HMAC-SHA256 encryption by

utilizing the session Storage feature of HTML5. [12] This paper describes a constant-time version of

AES that requires just 7.59 cycles/byte on an Intel Core 2 Q9550. The costs associated with this

implementation include the expenses associated with converting the input data into bitsliced format

and the output data back to normal format. [15]The AES-GCM authenticated encryption (AE) crypto-

core design described in this study is appropriate for Internet of Things security applications. The

AES-GCM core provides integrity and authenticity using GHASH and confidentiality through the

Counter (CTR) mode of the AES block cipher. [17] The authors utilized this (already-fixed) problem

as a concrete illustration of how AES-GCM's authentication technique (GHASH) is vulnerable. [31]

Several high throughput network protocols have been allowed to use the Advanced Encryption

Standard (AES) in conjunction with the Galois Counter Mode (GCM) of operation to offer

authenticated encryption. [32] The authors of this paper discussed the effective FPGA architecture

of the GCM in conjunction with the AES block cipher. [33] This article presents an efficient Galois

Counter Mode of operation (GCM) implementation using the Advanced Encryption Standard (AES)

on low-end microcontrollers. [34]Two effective hardware implementations of the AE schemes, AES-

GCM and AEGIS, are also shown in this article. Because of the innate computation feedback in AES-

GCM, system efficiency is always dictated by the Galois Hash (GHASH) architecture. [35] The

writer's assessments on Deoxys, a third-round contender in the current Competition for Authenticated

Encryption: Security, Applicability, and Robustness (CAESAR), are included in this article.

3. METHODOLOGY

Description of the Proposed System:

Advanced Encryption Standard (AES)-enabled wearable health data monitoring devices ensure the

integrity and confidentiality of sensitive data. AES encryption enables safe communication between

the blood pressure monitor and other connected devices, such as smartphones or cloud servers, where

health data is processed or stored. Message Authentication Codes (MACs) are used to ensure data

integrity and authenticity instead of encrypting data. The methods listed below can be used to

implement MAC and AES encryption in wearable technology in order to monitor related health data:

1. Determine Which Data to Encrypt: Determine which health data collected by wearable

technology needs to be encrypted. "TCD_data" is the name of the dataset that the system utilizes.

The Transcranial Doppler (TCD) Data non-invasive ultrasound technique is used to measure the

http://www.iiardjournals.org/

International Journal of Computer Science and Mathematical Theory (IJCSMT) E-ISSN 2545-5699

P-ISSN 2695-1924 Vol 10. No.2 2024 www.iiardjournals.org

 IIARD – International Institute of Academic Research and Development

Page 161

major arteries in the brain's blood flow velocity. A "TCD_data" dataset may contain measurements

made during TCD exams, such as pulsatility indices, blood flow velocities, and other hemodynamic

parameters. Table 1 shows the dataset TCD_data, and Table 2 shows an example of SUBJ003, which

is a dataset TCD_data. These datasets on blood pressure were gathered from physionet.org.

2. Select the AES Configuration: For this investigation, the AES-256 has been used. With a 256-

bit key length, this arrangement provides the highest level of safety among all AES versions. AES-

256 offers a stronger resistance against brute-force attacks.

3. Produce Keys for Encryption: Generate strong encryption keys to use with AES-256. These keys

ought to be securely stored by the wearable device and rendered unreadable by everyone but

approved users or apps. The AES-256 operating mechanism is based on CBC (Cipher Block

Chaining).

4. Encrypt Health Data: Encrypt the wearable device's collected private health data using AES-256

encryption and the created encryption keys. Encrypt data before transferring it across wired or

wireless communication routes.

5. MAC Computation: A secure MAC technique, such as HMACSHA256, is employed in addition

to encryption to create a MAC over the encrypted data. The MAC ensures the integrity and validity

of the encrypted data. The wearable device determines the MAC using a secret key that is unique to

it and the server. The PyCryptodome framework was used in this investigation. Many cryptographic

techniques, including hash functions, digital signatures, symmetric and asymmetric encryption, and

HMAC, are available through this Python wrapper for the Crypto++ package. Use the HMAC-

SHA256 method to find the message's HMAC value. Provide the secret key and the message to the

HMAC algorithm as inputs.

6. Secure Data Transmission: Verify that the wearable technology securely sends encrypted health

data to other platforms, cloud servers, or mobile devices.

7. Install Data Decryption: To unlock the protected health data, install a decryption capability in

the recipient systems or applications using the appropriate AES-256 keys. After acquiring the data,

the central server recomputes the MAC using the same secret key and the encrypted data it received.

If both the computed and acquired MACs match, it indicates that the data was not changed during

communication.

8. Manage Key Management: Use suitable key management protocols to stop unauthorized access

to or exposure of AES-256 encryption keys. Establish procedures for key production, distribution,

rotation, and revocation in order to safeguard encrypted data.

9. Test and Validate Security: Carefully test and validate the AES encryption deployment to ensure

its effectiveness and security.

Table 1: TCD_data Dataset

Participant Sex Dominant

Hand

Body

Mass

Index

Systolic

Blood

Pressure

Diastolic

Blood

Pressure

Education 0-

back(1)

Left

Blood

Flow

Velocity

1-back

Left

Blood

Flow

Velocity

SUBJ001 M R 28.4 125 85 MD, PhD 54.2806 53.4231

SUBJ002 M R 26.95 115 70 PhD 23.74456 22.19077

SUBJ003 M R 25.98 114 70 MD 44.98957 45.51511

SUBJ004 F R 20.51 98 60 MD 45.51381 44.84977

SUBJ005 M R 26.93 132 80 MD 28.75367 29.50703

http://www.iiardjournals.org/

International Journal of Computer Science and Mathematical Theory (IJCSMT) E-ISSN 2545-5699

P-ISSN 2695-1924 Vol 10. No.2 2024 www.iiardjournals.org

 IIARD – International Institute of Academic Research and Development

Page 162

Table 2: SUBJ003 Dataset

Sample Rate: 400

Relative Time Date Time Stamp UTC Left MCA Right MCA

0 9/13/2018 1:59:40 PM 0.600586 0.611267

0.01 9/13/2018 1:59:40 PM 0.593872 0.611267

0.02 9/13/2018 1:59:40 PM 0.583801 0.610352

0.03 9/13/2018 1:59:40 PM 0.574951 0.610046

0.04 9/13/2018 1:59:40 PM 0.570984 0.610046

0.05 9/13/2018 1:59:40 PM 0.57251 0.610657

Algorithm

The steps of the AES-256 algorithm are as follows:

AES-256 Encryption:

1. Take the 128-bit plaintext block and the 256-bit secret key.

2. Run through the plaintext through a first key-dependent permutation.

3. Carry out the ensuing 14 rounds:

a. Use S-boxes to carry out a replacement layer.

b. Use a linear transformation to carry out a linear mixing layer.

c. Include the round key that the secret key yielded.

4. Complete one last permutation that depends on a key.

5. The output is the generated 128-bit ciphertext.

The following is the expression for the HMAC-SHA256 formula:

𝐻𝑀𝐴𝐶SHA-256(𝐾,)=SHA-256((𝐾⊕opad)∥SHA-256((𝐾⊕ipad)∥𝑀))HMACSHA-256

(K,M)=SHA-256((K⊕opad)∥SHA-256((K⊕ipad)∥M))

Where:

• K (padded to a block size if necessary) represents the secret key.

• 𝑀 is the message that has to be confirmed.

• The symbol ⊕ indicates bitwise XOR.

• The key provides the padding constants padopad and ipadipad.

• ∥ indicates concatenation.

• SHA-256 (SHA-256() is the representation of the SHA-256 hash function.

• The building of the HMAC consists of two steps:

There are two steps in the construction of the HMAC:

The building of the HMAC consists of two steps:

1. Key Padding: If a key is larger than the block size (64 bytes for SHA-256), it can be hashed

using the hash function to create a fixed-size key. If the key is shorter than the block size, it is

padded with zeros to the block size.

2. Inner and Outer Padding: The key is XORed with the inner and outer padding constants,

ipadipad and opadopad. Subsequently, the message is hashed twice: once with the concatenation of

the message and the inner padded key, and once with the outer padded key and the result of the first

hash.

http://www.iiardjournals.org/

International Journal of Computer Science and Mathematical Theory (IJCSMT) E-ISSN 2545-5699

P-ISSN 2695-1924 Vol 10. No.2 2024 www.iiardjournals.org

 IIARD – International Institute of Academic Research and Development

Page 163

The HMAC-SHA256 authentication code, which can be used to verify the message's validity and

integrity, is the result of applying a single secret key to a hash. It is important to keep in mind that

HMAC-SHA256's security features and, when used effectively, resilience to known threats make it

a popular choice for message authentication in a wide range of cryptographic protocols and

applications.

The procedures for encrypting and decrypting a CSV file using the AES-GCM (Advanced

Encryption Standard with Galois/Counter Mode) algorithm. The techniques employed and the

algorithm are broken out as follows:

Methods Used:

1. The function encrypt_data(data, key, aad) is in charge of utilizing AES-GCM to encrypt the

input data. The following specifications are required. The additional authenticated data (AAD),

which is also a 256-bit key, the 256-bit encryption key, and the data to be encrypted—which in this

case is a string. Using the AESGCM class from the cryptography package, the method creates a

random 12-byte nonce, encrypts the data, and then returns both the encrypted data and the nonce.

2. The function decrypt_data(nonce, encrypted_data, key, aad) is in charge of utilizing AES-GCM

to decrypt the encrypted data. The following specifications are required. The additional

authenticated data (AAD), which is likewise a 256-bit key, the encrypted data, the nonce used

during the encryption procedure, and the 256-bit encryption key. The function decrypts the data

using the AESGCM class and outputs the resultant string.

The algorithm

1. To begin the encryption or decryption process, the user is required to provide the path to the

CSV file.

2. After reading the CSV file, the information is saved as a list of rows.

3. The first 5 rows of the original data are printed to the console.

4. The secrets.token_bytes() function is used to generate a random 256-bit AAD key and a random

256-bit encryption key.

5. The encryption procedure has a time limit, and for every data row:

• The encryption process is timed, and for each row in the data:

• The row is converted to a comma-separated string.

• The encrypt_data() function is called with the row data, the encryption key, and the AAD

key as arguments.

• The returned nonce and encrypted data are stored in a list.

6. Each nonce and encrypted data combination in the encrypted data list has a timed decryption

process.

• The nonce, encrypted data, encryption key, and AAD key are passed as parameters to the

 decrypt_data() method.

• After decrypting, the row is divided into separate columns and kept in a list.

7. The console is printed with the first five rows of both the encrypted and decrypted data.

4. RESULTS

Figure 1 displays both the original and encrypted data after hashing and encrypting it using the AES

256 and HMAC algorithms. The original data and the encrypted data are displayed in Figure 2, which

displays the outcomes of hashing and encryption using the AES-GCM technique. A graphical

depiction of the amount of time required to encrypt and decrypt data using both techniques is shown

in Figure 3. Table 3 displays the encrypted output using the AES 256 and HMAC approaches. The

encrypted file, file size in megabytes (MB), encryption key, and HMAC key are all listed in this table.

http://www.iiardjournals.org/

International Journal of Computer Science and Mathematical Theory (IJCSMT) E-ISSN 2545-5699

P-ISSN 2695-1924 Vol 10. No.2 2024 www.iiardjournals.org

 IIARD – International Institute of Academic Research and Development

Page 164

The encrypted output using the AES-GCM method is shown in Table 4. The encrypted file, file size

in megabytes (MB), encryption key, and AAD key are all listed in this table. Table 5 displays the

amount of time required to encrypt and decrypt data using AES-256/HMAC techniques. Time to

encrypt CSV data with AES-256/HMAC is shown in this table as TEDAH, and Time to decrypt CSV

data encrypted using AES-256/HMAC is shown as TDEDAH. Table 6 shows the Time Consumption

Demonstration for Encrypting and Decrypting Data Using AES-GCM Method. The Time to Encrypt

CSV Data with AES-GCM is shown in this table as TEDAG, while the Time to Decrypt CSV Data

with AES-GCM is shown as TDED.

Figure 1: Results of Encryption and Hashing using the AES 256 and HMAC Techniques

http://www.iiardjournals.org/

International Journal of Computer Science and Mathematical Theory (IJCSMT) E-ISSN 2545-5699

P-ISSN 2695-1924 Vol 10. No.2 2024 www.iiardjournals.org

 IIARD – International Institute of Academic Research and Development

Page 165

Figure 2: Results of Encryption and Hashing using the AES-GCM Method

Table 3: Encrypted result using AES 256 and HMAC techniques

N/S Encrypted file File Size MB Encryption Key HMAC Key

1 SUBJ001_encry

pted.csv

4.89 b'w\xb6"\xc7\xe5@\x05\xc4\

xb4!\x89\xab\x05\xde\x9c"\'\x

f8\xfe\xd9\xd3w\xc0\xd6\x03\

xbd/\xea,\x9d\x13,'

177d39f67cac68281708d

0144558a4d3401296a58

8f0d1e7131b119f637c60

4c

2 SUBJ002_encry

pted.csv

3.36 b'\xeb\xda\xd5\xd4\xdew\xf4

x\xe6\x7f\xa5B\xf1\xd7\xa6\x

e9@\xc4>\xea_%\x86\xeb\xaf

\x00\xe1\xc6\xcb\xd5D\x82'

57f2126c3d98d4cfd7277

de45c8a245d74ec9c2cae

5546458de1605edb75d3

6e

3 SUBJ003_encry

pted.csv

3.31 b'&s\x1f\x9a\xda]\\\x19)\x15\

x14\xb5\xbe(\xc9\xc5\x1c\xeb

r#\xd9r\x12\x9a\xd0\xec\xc4v

a\x96e_'

1c902aa02a1a8e5ab0058

8c2ea1e52766e5f5a64dc

11390523af8d3fc44c9a4

4

4 SUBJ004_encry

pted.csv

3.70 b'b{\xc0\xab\x86\xb5\x80|\xb

6\xd7\xd8\x82\xe7o&c\xdawk

\x8e\xbe\x9b\xf6W(U\x81\x1

7\xf0s\x8a\x1e'

31f0e6928602bf12580c6

1a4634843b341e97fdffd

5f738553ce2461a79cc26

1

http://www.iiardjournals.org/

International Journal of Computer Science and Mathematical Theory (IJCSMT) E-ISSN 2545-5699

P-ISSN 2695-1924 Vol 10. No.2 2024 www.iiardjournals.org

 IIARD – International Institute of Academic Research and Development

Page 166

5 SUBJ005_encry

pted.csv

3.37 b'\xbb\x99i\xd9\xfc\xce`\x8a\

xc3\x00r\x1d&<x\x9c\xad\xd

4_\x90{\x80\xc8\xc5\x10\x12

\xdf>\x17\xa5\x8b\xcd'

63d532e9658d48913a12f

3b33a01430a2dc0978ef4

f26af8b4edef13ff73d169

Table 4: Encrypted result using AES-GCM Method

N/S Encrypted file File Size MB Encryption Key AAD Key

1 SUBJ001_encry

pted.csv

4.89 b51dcb733f09746429b90e293

6975f8c22165994b041b6189

5424ef3537596da

ed881e933734a1e10d905

e2aab2da2095ed9963aaa

b29f507920e11ed974548

a

2 SUBJ002_encry

pted.csv

3.36 13c6c5f41b13272468f06fe97

22f1aea7541d6fda64326db3c

8f0a677750f3ba

db07c473bd9cc95262874

bfbe220af004e495fe6b56

aa24f6190dd3a7f69f4a6

3 SUBJ003_encry

pted.csv

3.31 e4584291284b6119b5306df0

3d7faf2ae89d3c212da367d66f

1d5231c9489eb8

20f3fe05230fa98d8117e7

43d9a7571e8d48c80e627

254cf545b2b1906568d6d

4 SUBJ004_encry

pted.csv

3.70 a6045904db5e1462585cf75df

151e830a3c9f5022a570c1efb

46755d72d5441d

b22eddcddc6dbd86fb9ff1

33f24b37b89089c3be7ae

a9a91915c5bec45e1c990

5 SUBJ005_encry

pted.csv

3.37 2d9fdca68c0e4f3a7b74e8410

5cefd3c0e6fdbc306b3226119

e183ae8d063630

6ce849b1524a3cbd715ae

eb2a347d4f2ee67112c97

80ec20ec459b343bf0dc7

2

Table 5: Proves Time Consumption to Encrypt and Decrypt Data using AES-256/HMAC

Techniques

N/S File Size MB TEDAH TDEDAH

1 4.89 48.9 31.5

2 3.36 20.7 21.9

3 3.31 19.4 20.7

4 3.70 24.9 23.2

5 3.37 21.8 22.4

Table 6: Demonstrates Time Consumption to Encrypt and Decrypt Data using AES-GCM

Method

N/S File Size MB TEDAG TDED

1 4.89 5.660716533660889 5.709982872009277

2 3.36 5.620843410491943 5.454753160476685

3 3.31 5.571392297744751 6.3335487842559814

4 3.70 6.45686674118042 6.066409349441528

5 3.37 4.940171957015991 5.15477991104126

http://www.iiardjournals.org/

International Journal of Computer Science and Mathematical Theory (IJCSMT) E-ISSN 2545-5699

P-ISSN 2695-1924 Vol 10. No.2 2024 www.iiardjournals.org

 IIARD – International Institute of Academic Research and Development

Page 167

Figure 4: Graphical Representation of Time consumption to Encrypt and Decrypt data using

both methods

Tables 3 and 4 present the encrypted result display for both strategies. Encrypted file, file size in

megabytes, encryption key, HMAC key, and AAD key are all listed in this table. A graphical

depiction of the amount of time required to both encrypt and decrypt data is shown in Fig. 3. These

findings demonstrate that the 4.89 MB SUBJ001 file was encrypted and decrypted in 48.9 and 31.5

seconds, respectively, using AES-256/HMAC techniques. The findings also confirm that the 4.89

MB SUBJ001 file was encrypted and decrypted in 5.660716533660889 seconds and

5.709982872009277 seconds, respectively, using the AES-GCM Method. This demonstrates that the

AES-GCM Method can ensure data integrity and encrypt and decode data more quickly than the

AES-256/HMAC Techniques.

5. CONCLUSION

This study applies the HMAC hashing approach to assure data integrity at the physical layer of IoMT

and integrates the AES-256 encryption technique to secure data secrecy there as well. The AES-

GCM technique was also used in the research to guarantee data integrity and security at the physical

layer of the Internet of Medical Things. The amount of time needed to encrypt and decrypt the same

data was also compared for both algorithms in this paper. On a variety of digital platforms, the

Advanced Encryption Standard (AES) ensures secure communication and data security. The

trustworthy Message Authentication Code (HMAC), which is hash-based, can be used to verify the

integrity and authenticity of data transfer. The AES cipher operates in the Galois/Counter Mode, or

AES-GCM, which offers both authenticity and confidentiality. To offer authenticated encryption, it

combines the GHASH function with AES encryption in counter mode (AES-CTR). Python was used

as the programming language to create the system. These findings demonstrate that the 3.36 MB

SUBJ002 file was encrypted and decrypted in 20.7 and 21.9 seconds, respectively, using AES-

256/HMAC techniques. The findings also confirm that the 3.36 MB SUBJ002 file was encrypted and

decrypted in 5.454753160476685 seconds and 5.620843410491943 seconds, respectively, using the

AES-GCM Method. Better hardware support, performance and throughput, power and energy

http://www.iiardjournals.org/

International Journal of Computer Science and Mathematical Theory (IJCSMT) E-ISSN 2545-5699

P-ISSN 2695-1924 Vol 10. No.2 2024 www.iiardjournals.org

 IIARD – International Institute of Academic Research and Development

Page 168

consumption, security needs, ease of implementation, and compatibility are all benefits that AES-

GCM may offer. This is especially important for Internet of medical devices. The results of this study

will improve safe IoT smart healthcare systems and offer insightful information to practitioners and

researchers alike.

REFERENCES

1. Biryukov, A., & Khovratovich, D. (2009). Related-key cryptanalysis of the full AES-192 and

AES-256. In Advances in Cryptology–ASIACRYPT 2009: 15th International Conference on

the Theory and Application of Cryptology and Information Security, Tokyo, Japan,

December 6-10, 2009. Proceedings 15 (pp. 1-18). Springer Berlin Heidelberg.

2. Andriani, R., Wijayanti, S. E., & Wibowo, F. W. (2018, November). Comparision of AES

128, 192 and 256 bit algorithm for encryption and description file, In 2018 3rd International

Conference on Information Technology, Information System and Electrical Engineering

(ICITISEE) (pp. 120-124). IEEE.

3. Lanjewar, R., & Pande, G. (2015). Implementation of AES-256 Bit: A Review, Inventi Rapid:

Information Security.

4. Mohammed, N. Q., Amir, A., Ahmad, B., Salih, M. H., Arrfou, H., Thalji, N., ... &

Abdulhassan, M. M. (2023, April). A Review on Implementation of AES Algorithm Using

Parallelized Architecture on FPGA Platform, In 2023 IEEE International Conference on

Advanced Systems and Emergent Technologies (IC_ASET) (pp. 1-6). IEEE.

5. Biryukov, A., Dunkelman, O., Keller, N., Khovratovich, D., & Shamir, A. (2010). Key

recovery attacks of practical complexity on AES-256 variants with up to 10 rounds. In

Advances in Cryptology–EUROCRYPT 2010: 29th Annual International Conference on the

Theory and Applications of Cryptographic Techniques, French Riviera, May 30–June 3,

2010. Proceedings 29 (pp. 299-319). Springer Berlin Heidelberg.

6. Chandu, G. M., Abhishek, K., Lokesh, S., Ramalingeswararao, V., & Sarma, R. (2022).

Implementation of AES Algorithm using Dynamic S-box on FPGA, Futuristic Sustainable

Energy & Technology (pp. 137-145). CRC Press.

7. Shet, G. G., Jamuna, V., Shravani, S., Nayana, H. G., & Kumar, P. (2020). Implementation

of AES Algorithm Using Verilog. JNNCE Journal of Engineering & Management (JJEM),

4(1), 17.

8. Azeez, N. A., & Chinazo, O. J. (2018). Achieving Data Authentication With Hmac-Sha256

Algorithm, Computer Science & Telecommunications, 54(2).

9. Suhaili, S., Julai, N., Sapawi, R., & Rajaee, N. (2024). Towards Maximising Hardware

Resources and Design Efficiency via High-Speed Implementation of HMAC based on SHA-

256 Design. Pertanika Journal of Science & Technology, 32(1).

10. Kelly, S., & Frankel, S. (2007). Using hmac-sha-256, hmac-sha-384, and hmac-sha-512 with

ipsec (No. rfc4868).

11. Juliato, M., & Gebotys, C. (2011). FPGA implementation of an HMAC processor based on

the SHA-2 family of hash functions. University of Waterloo, Tech. Rep.

12. Käsper, E., & Schwabe, P. (2009, September). Faster and timing-attack resistant AES-GCM.

In International Workshop on Cryptographic Hardware and Embedded Systems (pp. 1-17).

Berlin, Heidelberg: Springer Berlin Heidelberg.

13. Gueron, S., Langley, A., & Lindell, Y. (2017). AES-GCM-SIV: specification and analysis.

Cryptology ePrint Archive.

http://www.iiardjournals.org/

International Journal of Computer Science and Mathematical Theory (IJCSMT) E-ISSN 2545-5699

P-ISSN 2695-1924 Vol 10. No.2 2024 www.iiardjournals.org

 IIARD – International Institute of Academic Research and Development

Page 169

14. Bellare, M., & Tackmann, B. (2016). The multi-user security of authenticated encryption:

AES-GCM in TLS 1.3. In Advances in Cryptology–CRYPTO 2016: 36th Annual International

Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings, Part I

36 (pp. 247-276). Springer Berlin Heidelberg.

15. Sung, B. Y., Kim, K. B., & Shin, K. W. (2018, January). An AES-GCM authenticated

encryption crypto-core for IoT security. In 2018 International Conference on Electronics,

Information, and Communication (ICEIC) (pp. 1-3). IEEE.

16. Wang, S. (2006). An architecture for the AES-GCM security standard (Master's thesis,

University of Waterloo).

17. Gueron, S., & Krasnov, V. (2014, April). The fragility of AES-GCM authentication

algorithm. In 2014 11th International Conference on Information Technology: New

Generations (pp. 333-337). IEEE.

18. Arunkumar, B., & Kousalya, G. (2018). Analysis of AES-GCM cipher suites in TLS. In

Intelligent Systems Technologies and Applications, Springer International Publishing, (pp.

102-111).

19. Rodríguez, M., Astarloa, A., Lázaro, J., Bidarte, U., & Jiménez, J. (2018, November). System-

on-Programmable-Chip AES-GCM implementation for wire-speed cryptography for SAS. In

2018 Conference on Design of Circuits and Integrated Systems (DCIS) (pp. 1-6). IEEE.

20. Liu, Y., Guo, F., & Wang, C. (2019). Performance Evaluation of AES-GCM and AES-CBC

with HMAC-SHA256 for IPsec Encryption Offload, IEEE Access, 7.

21. Norsuriati, M. S., Sobri, N. M., Hafiszah, H. Z., Nazib, A. M., Suhaimizan, W. Z., Ashok,

V., & Mahadi, A. (2021). Development of IoT Based Cuffless Blood Pressure Measurement

System, Journal of Physics: Conference Series, International Conference on Biomedical

Engineering (ICoBE), 2071, 1-7.

22. Nia, A. M., & Jha, N. K. (2017). A comprehensive study of the security of Internet-of-Things.

IEEE Trans. Emerging Top. Computer, 23(12), 586–602.

23. Jain, R., Dhand, G., Bansal, H., Shiksha, S., Sonepat, S., & Jain, P. (2023). Detection

Mechanism in IoT framework using Artifcial Neural Networks, Research Square.

24. Yaqoob, I., Ahmed, E., Rehman, M. H., Ahmed, A. I. A., Al-garadi, M. A., Imran, M., &

Guizani, M. (2017). The rise of ransomware and emerging security challenges in the Internet

of Things, Computer Networks, 129, 444–458.

25. Rasool, R. U., Ahmad, H. F., Rafique, W., Qayyum, A., & Qadir, J. (2022). Security and

privacy of internet of medical things: A contemporary review in the age of surveillance,

botnets, and adversarial ML, Journal of Network and Computer Applications, 201, 103332.

26. Murray-Watson, R. (2024, January 26). Healthcare Data Breach Statistics, Hipaajournal,

https://www.hipaajournal.com/healthcare-data-breach-statistics/.

27. Michail, H. E., Athanasiou, G. S., Kelefouras, V., Theodoridis, G., & Goutis, C. E. (2012).

On the exploitation of a high-throughput SHA-256 FPGA design for HMAC. ACM

Transactions on Reconfigurable Technology and Systems (TRETS), 5(1), 1-28.

28. Choi, H., & Seo, S. C. (2021). Optimization of PBKDF2 using HMAC-SHA2 and HMAC-

LSH families in CPU environment. IEEE Access, 9, 40165-40177.

29. Collin, S., & Standaert, F. X. (2020). Side channel attacks against the Solo key-HMAC-

SHA256 scheme (Doctoral dissertation, Ph. D. thesis, UCL-Ecole polytechnique de Louvain).

30. Lin, L., Chen, K., & Zhong, S. (2017). Enhancing the session security of zen cart based on

HMAC-SHA256. KSII Transactions on Internet and Information Systems (TIIS), 11(1), 466-

483.

http://www.iiardjournals.org/

International Journal of Computer Science and Mathematical Theory (IJCSMT) E-ISSN 2545-5699

P-ISSN 2695-1924 Vol 10. No.2 2024 www.iiardjournals.org

 IIARD – International Institute of Academic Research and Development

Page 170

31. Buhrow, B., Fritz, K., Gilbert, B., & Daniel, E. (2015, December). A highly parallel AES-

GCM core for authenticated encryption of 400 Gb/s network protocols. In 2015 International

Conference on ReConFigurable Computing and FPGAs (ReConFig) (pp. 1-7). IEEE.

32. Henzen, L., & Fichtner, W. (2010, September). FPGA parallel-pipelined AES-GCM core for

100G Ethernet applications. In 2010 Proceedings of ESSCIRC (pp. 202-205). IEEE.

33. Kim, K., Choi, S., Kwon, H., Kim, H., Liu, Z., & Seo, H. (2020). PAGE—Practical AES-

GCM Encryption for Low-End Microcontrollers. Applied Sciences, 10(9), 3131.

34. Abdellatif, K. M., Chotin-Avot, R., & Mehrez, H. (2017). AES-GCM and AEGIS: efficient

and high speed hardware implementations. Journal of Signal Processing Systems, 88, 1-12.

35. Koteshwara, S., Das, A., & Parhi, K. K. (2017, May). FPGA implementation and comparison

of AES-GCM and Deoxys authenticated encryption schemes. In 2017 IEEE International

symposium on circuits and systems (ISCAS) (pp. 1-4). IEEE.

http://www.iiardjournals.org/

